LITTLE FLOWER SCHOOL, RAPTINAGAR, GORAKHPUR FIRST SEMESTER EXAMINATION 2021-2022

Math	ematics			Max Marks: 80
SE	CTION A - Candida SECTION B - Att	ates are required to a provid tempt all questions (i	ttempt all questions in ded in SIX questions) internal choice has be	n this section (Internal choice has been en provided in TWO questions)
<u>SECTION – A</u>				
Quest	ion1			[15x1 = 15]
In sub	parts (a) to (j) choose	e the correct option	and in sub-parts (k) to	o (o), answer the questions as instructed:
a)	Number of proper s	subsets of set $A = \{a, a\}$, b, c} is:	
	1) 6	2) 8	3) 7	4) 9
b)	If $n(A) = 3$ and $n(B)$	$= 4$ then $n(A \times B)$ is	5:	
	1) 10	2) 25	3) 10	4) 12
c)	Given $R = \{ (x, y) :$	$y = x - 3, x, y \in Z \}.$	which of the followin	g ordered pair belong to relation:
	1) (5, 2)	2) (1, 2)	3) (7, – 4)	4) (-4, 1)
d)	If $f(x) = \sin x$, $x \in R$, then range of $f(x)$ is:			
	1) [-1, 1]	2) (-1, 1)	3) [0, 1]	4) [-1, 0]
e)	Number of relation	on set $A = \{a, b, c\}$	is:	
	1) 6	2) 8	3) 7	4) None of the above
f)	The value of expres	ssion $\cos 1^\circ 2^\circ$	cos179° is equal to:	
	1) 0	2) 2	3) 3	4) none of the above
g)	The range of $f(x) =$	$2-3x, x \in \mathbb{R}, x > 0$	is:	
	1) (−∞, 2]	2) (– ∞, 2)	3) [−∞, 2]	4) [−∞, 2)
h)	h) Value of $\sin 75^\circ + \sin 15^\circ$ is:			
	3	$\sqrt{3}$	$-\frac{\sqrt{3}}{\sqrt{3}}$	$-\frac{3}{2}$
	1) V 2	2) 2	3) 2	4) V 2
i)	The value of sin 18 ⁰	0		
	1) $\frac{\sqrt{5}+1}{\sqrt{5}+1}$	2) $\frac{\sqrt{5}-1}{\sqrt{5}-1}$	3) $\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{10+2\sqrt{5}}}$	(1) none of the above
•\	$1) - \frac{1}{4}$	$2)\frac{1}{4}$	$\frac{3}{4}$	
J)	Consider the statem 1	tent P(n): $10n + 3$ is p	prime, then which of	the following is not true:
1-)	I) $P(I)$	2) P(2)	3) P(3)	4) P(4)
K)	If $P = \{1, -1\}$ then I	$\begin{array}{c} \text{Ind} \mathbf{P} \mathbf{X} \mathbf{P} \mathbf{X} \mathbf{P}. \\ (3709) \end{array}$		
1)	Find the value $\cos(-\delta/0^2)$.			
m)	m) in the statement $\Gamma(n)$. If $(n+1)(n+2)$ is divisible by 0, then what is $\Gamma(3)$. n) $\Lambda = \{1, 2, 3, 17\}$ and P is a relation on Λ defined by $P = \{(x, y) : 3y, y = 0, y, y \text{ or a classical statement}\}$			
II)	$A = \{1, 2, 3,, 1/\}$	and K is a relation of	If A defined by $\mathbf{K} = \{$	(x, y) : 5x - y = 0, x, y are elements of
	Find y and y if (Ay	(105001 101111.) (3v + 5 - 7)		
0)	1 IIIU A allu y II (4X -	+ 3, y = (3x+3, -2)	•	

Class. XI

a) Prove that: $\sqrt{\frac{1+\cos x}{1-\cos x}} = \cos ec x + \cot x$.

b) If $\tan 25^\circ = x$, prove that $\frac{\tan 155^\circ - \tan 115^\circ}{1 + \tan 155^\circ \tan 115^\circ} = \frac{1 + x^2}{2x}$

[2]

Time 3 Hours

Question 3

If A= the set of letters in the word JAIPUR and B= the set of letters in the word JODHPUR, then verify that $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

Question 4

Prove that: $\cos 4x = 1 - 8\sin^2 x \cos^2 x$.

Question 5

a) If $f(x) = x^3 - \frac{1}{x^3}$, prove that $f(x) + f\left(\frac{1}{x}\right) = 0$

OR

b) Let $R = \{(x, y): x, y \in \mathbb{Z}, y = 2x - 4\}$, If (a, -2) and $(4, b^2)$ belong to R, Find the values of a and b.

Question 6 [2]

Find the domain and range of the function $\sqrt{9-x^2}$

Question 7

By using principle of mathematical induction prove that:

$$1^3 + 2^3 + 3^3 + \ldots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Question 8

If ξ = the set of all digits in our decimal system, A = { x: x is prime}, B = { x : x is perfect square } then prove that (A \cup B)' = A' \cap B'

Question 9

a) Prove that : Sin 10° Sin 50° Sin 60° Sin 70° = $\sqrt{3}/16$

OR

b) Prove that: $\cos A \cos 2A \cos 4A \dots \cos 2^{n-1} A = \frac{\sin 2^n A}{2^n \sin A}$

Question 10

a) If R is the relation on N defined by $R = \{(x, y) : y = x + \frac{12}{x}, x, y \in N\}$, then find R in roster form and find it domain and range.

OR

b) If $f(x) = y = \frac{ax-b}{cx-a}$, then prove that f(y) = x.

Question 11

- a) Find the general solution : $2 \sin^2 x + \sqrt{3} \cos x + 1 = 0$ OR
- b) Find the general solution: $\cos 3x + \cos x \cos 2x = 0$

Question 12

By using principle of mathematical induction, show that $3^{2n+2} - 8n - 9$ is divisible by 64.

[4]

[2]

[2]

[2]

[4]

[4]

[4]

[6]

[6]

Question 13

a) Prove that $\frac{a^2 \sin(B-C)}{\sin B + \sin C} + \frac{b^2 \sin(C-A)}{\sin C + \sin A} + \frac{c^2 \sin(A-B)}{\sin A + \sin B} = 0$ **OR** b) If $\tan \frac{x}{2} = \frac{m}{n}$ prove that m sin x + n cos x = n

Question 14

In an university, out of 100 students, 15 offered Mathematics only, 12 offered statistics only, 8 offered only physics; 40 offered Mathematics and Physics, 20 offered physics and statistics; 10 offered Mathematics and statistics. 65 offered physics. By drawing a Venn diagram, find the number of student who:

- a) Offered Mathematics.
- b) Offered Statistics.
- c) Did not offer any of the above three subjects.

SECTION – B

Question 15

In sub parts (a) and (b) choose the correct option and in sub – parts (c) to (e), answer the questions as instructed:

- a) Which of the following is not correct?
 - (1) $N \subset R$ (2) $N \subset Q$ (3) $Q \subset R$ (4) $N \subset T$ Let r(A) we and r(B) is then the number of non-constructions from A to B
- b) Let n(A) = m and n(B) = n, then the number of non empty relations from A to B is: (1) m^m (2) n^m-1 (3) $2^{mn}-1$ (4) 2^{mn}
- c) Evaluate $\cos 15^{\circ} \sin 15^{\circ}$.
- d) Find the domain of $f(x) = \frac{3x}{28-x}$
- e) Prove that $(\sin x \cos x)^2 = 1 \sin 2x$

Question 16

a) Solve it: [3x - 4] = 5

OR

b) If f and g are two real function defined by f(x) = 2x+1 and g(x) = 4x-7, then for what real value of x, f(x) = g(x)

Question 17

- a) Find the degree measure of 6 radian **OR**
- b) Express the angle $-37 \circ 30'$ in radian measure.

Question 18

Draw the graph of 2sin 2x.

[5x1=5]

[4]

[2]

[4]