

Class 7th physics
Chapter 1- physical quantities and measurements
Numerical type questions-

C. Numericals

Question 1.

The length, breadth and height of a water tank are 5 m, 2.5 m and 1.25 m respectively. Calculate the capacity of the water tank in (a) m³ (b) litre.

Answer:

Given,

Length (l) = 5m

Breadth (b) = 2.5 m and

Height (h) = 1.25 m

$$\begin{aligned}\text{(a) Volume of water tank in m}^3 &= l \times b \times h \\ &= 5\text{m} \times 2.5\text{ m} \times 1.25\text{ m} \\ &= 15.625\text{ m}^3\end{aligned}$$

$$\begin{aligned}\text{(b) Volume of water tank in litre} &= 15.625 \times 1000 \\ &= 15625\text{ litre}\end{aligned}$$

Question 2.

A solid silver piece is immersed in water contained in a measuring cylinder. The level of water rises from 50 ml to 62 ml. Find the volume of silver piece.

Answer:

Given, initial level of water $v_1 = 50\text{ ml}$

Final level of water $v_2 = 62\text{ ml}$

Volume of silver piece $V = v_2 - v_1$

$= 62\text{ ml} - 50\text{ ml}$

$= 12\text{ ml or } 12\text{cm}^3$

Question 3.

Find the volume of a liquid present in a dish of dimensions 10 cm x 10 cm x 5 cm.

Answer:

Volume of water = Length \times breadth \times height = 10

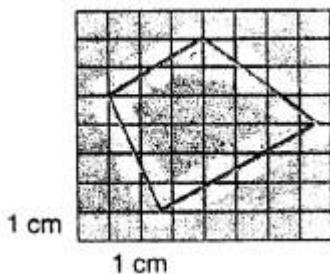
$\text{cm} \times 10\text{ cm} \times 5\text{ cm} = 500\text{ cm}^3$ or 500 ml.

Question 4.

A rectangular field is of length 60 m and breadth 35 m. Find the area of the field.

Answer:

Length of a rectangular field = 60 m


Breadth of rectangular field = 35 m \therefore Area = 60

$\text{m} \times 35\text{ m}$

$= 2100\text{ m}^2$

Question 5.

Find the approximate area of an irregular lamina of which boundary line is drawn on the graph paper shown in fig. 1.16. below.

Answer:

From figure, the number of complete squares = 11

The number of squares more than half = 9 \therefore Total number of squares = 11 + 9 = 20

\therefore Area of the 1 square = 1 cm \times 1 cm = 1 cm²

\therefore Area of 20 squares = 20 \times 1 cm² = 20 cm²

\therefore Approximate area of irregular lamina = 20 cm²

Question 6.

A piece of brass of volume 30 cm³ has a mass of 252 g. Find the density of brass in (i) g cm⁻³, (ii) kg m⁻³.

Answer:

Ans. Given, Mass M = 252 g

Volume V = 30 cm³

$$(i) \text{ Density } d = \frac{M}{V} = \frac{252}{30 \text{ cm}^3}$$
$$= 8.4 \text{ g cm}^{-3}$$

$$(ii) \text{ Since, } M = 252 \text{ g} = 0.252 \text{ kg}$$
$$V = 30 \text{ cm}^3 = 30 \times 10^{-6} \text{ m}^3$$

$$\text{Density } d = \frac{0.252 \text{ kg}}{30 \times 10^{-6} \text{ m}^3} = \frac{0.252 \text{ kg}}{30 \times \frac{1}{1000000} \text{ m}^3}$$
$$= \frac{0.252 \times 1000000 \text{ kg}}{30 \text{ m}^3} = \frac{25200}{3} \text{ kg m}^{-3}$$
$$= 8400 \text{ kg m}^{-3}$$

Question 7.

The mass of an iron ball is 312 g. The density of iron is 7.8 g cm⁻³. Find the volume of the ball.

Answer:

Given, Mass M = 312 g

Density d = 7.8 g cm⁻³

$$\text{Since, } d = \frac{M}{V} \Rightarrow V = \frac{M}{d}$$

$$\text{Hence, volume of an iron ball } V = \frac{312}{7.8} = 40 \text{ cm}^3$$

Question 8.

A cork has a volume 25 cm^3 . The density of cork is 0.25 g cm^{-3} . Find the mass of cork.

Answer:

Given, density $d = 0.25 \text{ g cm}^{-3}$

$V = 25 \text{ cm}^3$

$$\begin{aligned}\text{From relation } d &= \frac{M}{V} \Rightarrow M = d \times V \\ &= 0.25 \times 25 \\ &= 6.25 \text{ g}\end{aligned}$$

Question 9.

The mass of 5 litre of water is 5 kg. Find the density of water in g cm^{-3} .

Answer:

Given, Mass $M = 5 \text{ kg} = 5000 \text{ g}$

Volume $V = 5 \text{ litre} = 5000 \text{ cm}^3$

$$\begin{aligned}\text{Density of water } d &= \frac{M}{V} \\ &= \frac{5000 \text{ g}}{5000 \text{ cm}^3} = 1 \text{ g cm}^{-3}\end{aligned}$$

Question 10.

A cubical tank of side 1 m is filled with 800 kg of a liquid. Find: (i) the volume of tank, (ii) the density of liquid in kg m^{-3} .

Answer:

(i) Volume of a cube = side \times side \times side

side = 1 m

$$\therefore \text{volume} = 1 \text{ m} \times 1 \text{ m} \times 1 \text{ m} = 1 \text{ m}^3$$

(ii) Density of liquid in $\text{kg m}^{-3} = \frac{\text{Mass (M)}}{\text{Volume (V)}}$

Mass = 800 kg

Volume = 1 m^3

$$\therefore \text{Density} = \frac{800}{1 \text{ m}^3} \text{ kg} = 800 \text{ kg m}^{-3}$$

Question 11.

A block of iron has dimensions $2 \text{ m} \times 0.5 \text{ m} \times 0.25 \text{ m}$. The density of iron is 7.8 g cm^{-3} . Find the mass of block.

Answer:

Given, l = 2m b = 0.5 m

$$h = 0.25 \text{ m}$$

$$\text{Density of iron} = 7.8 \text{ g cm}^{-3} = 7.8 \times 1000 \text{ kg m}^{-3} = 7800 \text{ kg m}^{-3}$$

$$\text{Volume of block} = l \times b \times h$$

$$= 2 \times 0.5 \times 0.25 = 0.25 \text{ m}^3$$

$$\text{From relation } d = \frac{M}{V}$$

$$\begin{aligned}\therefore \text{Mass of iron block } M &= V \times d \\ &= 0.25 \times 7800 \text{ kg m}^{-3} \\ &= 1950 \text{ kg}\end{aligned}$$

Question 12.

The mass of a lead piece is 115 g. When it is immersed into a measuring cylinder, the water level rises from 20 ml mark to 30 ml mark.

Find:

(i) the volume of the lead piece, (ii) the density of the lead in kg m^{-3} .

Answer:

Ans. Given, $M = 115 \text{ g}$

$$V_1 = 20 \text{ ml}, V_2 = 30 \text{ ml}$$

$$\begin{aligned}\text{(i) Volume of lead piece } V &= V_2 - V_1 \\ &= 30 \text{ ml} - 20 \text{ ml} \\ &= 10 \text{ ml or } 10 \text{ cm}^3 [\because 1 \text{ ml} = 1 \text{ cm}^3]\end{aligned}$$

$$\text{(ii) Density of lead piece } d = \frac{M}{V}$$

$$= \frac{115}{10 \text{ cm}^3} = 11.5 \text{ g cm}^{-3}$$

$$\begin{aligned}&\text{(since, } 1 \text{ g cm}^{-3} = 1000 \text{ kg m}^{-3}\text{)} \\ &= 11.5 \times 1000 = 11500 \text{ kg m}^{-3}\end{aligned}$$

Question 13.

The density of copper is 8.9 g cm^{-3} . What will be its density in kg m^{-3} ?

Answer:

$$\text{Density of copper } d = 8.9 \text{ g cm}^{-3}$$

$$= 8.9 \times 1000 \text{ kg m}^{-3}$$

$$[\because 1 \text{ g cm}^{-3} = 1000 \text{ kg m}^{-3}]$$

$$= 8900 \text{ kg m}^{-3}$$

Question 14.

A car travels a distance of 15 km in 20 minute. Find the speed of the car in (i) km h^{-1} , (ii) m s^{-1} .

Answer:

Distance travelled by car = 15 km

Time taken = 20 minutes

(i) Speed of car in km h^{-1}

Convert 20 minutes to hour

$$1 \text{ minute} = \frac{1}{60} \text{ hour}$$

$$\therefore 20 \text{ minutes} = \frac{1 \times 20}{60} = \frac{1}{3} \text{ hour}$$

$$\text{Speed of car} = \frac{\text{Distance}}{\text{Time taken}}$$

$$= \frac{15 \text{ km}}{\frac{1}{3} \text{ h}}$$

$$= 15 \text{ km} \times 3 \text{ h}^{-1} = 45 \text{ km h}^{-1} = 45 \text{ km h}^{-1}$$

(ii) Speed of car in m s^{-1}

Convert 15 km into metres

$$1 \text{ km} = 1000 \text{ m}$$

$$15 \text{ km} = 1000 \times 15 = 15000 \text{ m}$$

...(i)

Convert minutes into seconds

$$1 \text{ minutes} = 60 \text{ sec.}$$

$$20 \text{ minutes} = 60 \times 20 = 1200 \text{ sec}$$

...(ii)

$$\text{Speed of car} = \frac{15000 \text{ m}}{1200 \text{ sec}}$$

$$= 12.5 \text{ m s}^{-1}$$

Question 15.

How long a train will take to travel a distance of 200 km with a speed of 60 km h^{-1} ?

Answer:

Distance covered by train = 200 km

Speed of train = 60 km h^{-1}

$$\text{We know speed} = \frac{\text{Distance}}{\text{Time}}$$

$$\Rightarrow 60 = \frac{200}{\text{Time}}$$

$$\begin{aligned}
 \text{Time} &= \frac{200}{60} = \frac{20}{6} = \frac{10}{3} \text{ hours} \\
 &= 3 \frac{1}{3} \text{ hours} = 3 \text{ h} + \frac{1}{3} \text{ hours} \\
 &= 3 \text{ h} + \frac{1}{3} \times 60 \text{ min} \\
 &= 3 \text{ h} + 20 \text{ min} \\
 &= 3 \text{ h} 20 \text{ min}
 \end{aligned}$$

Question 16.

A boy travels with a speed of 10 m s^{-1} for 30 minute. How much distance does he travel ?

Answer:

Speed of boy = 10 m s^{-1} Time taken = 30

minutes speed = distance travelled / time taken

Distance travelled = Speed \times Time taken

Convert 30 minutes to seconds

1 minute = 60 sec

30 minute $60 \times 30 = 1800$ seconds

Putting the value of speed and time we get Distance

travelled = $10 \text{ ms}^{-1} \times (1800 \text{ sec}) = 18000 \text{ m} = 18000 \text{ metre}$

or 18 km Ans.

Question 17.

Express 36 km h^{-1} in m s^{-1}

Answer:

$$\begin{aligned}
 36 \text{ km h}^{-1} &= \frac{36 \times 1000 \text{ m}}{60 \times 60} \\
 &= 10 \text{ m s}^{-1}
 \end{aligned}$$

Question 18.

Express 15 m s^{-1} in km h^{-1} .

Answer:

$$1 \text{ metre} = \frac{1}{1000} \text{ km}$$

$$15 \text{ metre} = \frac{15}{1000} \text{ km}$$

$$1 \text{ second} = \frac{1}{3600} \text{ hr}$$

$$\text{Here, Distance} = \frac{15}{1000} \text{ km}$$

$$\text{Time taken} = \frac{1}{3600} \text{ hr.}$$

$$\text{Speed} = \frac{\text{Distance}}{\text{Time taken}}$$

$$\begin{aligned} &= \frac{15}{\frac{1000}{1}} = \frac{15}{1000} \times \frac{3600}{1} \\ &= 54 \text{ km h}^{-1} \end{aligned}$$